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Note 

High Order “ZIP” Differencing of Convective Berms 

The ZIP flux form for differencing the term (wu)~, where w is a convected quantity and v is 
a convective velocity, is observed to be equivalent to differencing the alternative expression 
wt’, + w,z, using centered second order finite differences. The advantage of this form is that 
one class of nonlinear computational instabilities is eliminated. Based on this observation, the 
extension of the ZIP flux concept to arbitrarily high order accuracy is given. Computational 
examples show the advantage both of the ZIP flux concept itself and of its higher order forms 
within the context of flux-corrected transport (FCT) algorithms. 

I. INTRODUCTION 

Consider equations of the form 

where 
f=wv+f’ M 

and hence 

w, + (WV), +s: = 0. 

Here w, f and u are functions of the independent variables x” and t. 
The second term in Eq. (3) is called a convective term and is the subject of this 

paper. We shall say that a finite difference approximation to Eq. (3) is in conser- 
vation or “flux” form when the approximation can be written 

w;+1= W1--dtdx;‘[Fi+,/*--Pi-1/21~ (4) 

ere the subscripts refer to the spatial grid points xi, the superscripts to the temporal 
grid points t”, dt s tn+’ - tn, and dxi = $(x2+ r - +-& We shall assume henceforth 
that dxj is independent of i, and denote the quantity simpiy by dx. In this author’s 
opinion, nonuniform meshes are best handled by coordinate transformation or 
mapping techniques [3,4, 131. The FI+ 1,2 are called transportive fluxes, and are 
functions of the A at one or more of the time levels t”. For a given time level, the 
functional dependence of F on f can be written to achieve any desired order of 
spatial accuracy (see (1, Appendix]). For instance, centered second order differences 
require 

Fi+ 112 =fti+1 +“a (3 
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while centered fourth order differences give 

F i+l/Z = (7mc.h+, +.h> - WW(A+, +.L>. (6) 

For the purposes of this paper we wish to divide the net transportive flux Fi+ 1,z into 
two components : FF+ ,,2, the convective component, and Fi + 1,2, the non-convective 
component : 

F i+ l/2 z G+ l/2 + Fi + t/2 - (7) 

Thus F:+,,, and F;,,,, are the fluxes corresponding to the second and third terms 
respectively of Eq. (3). We shall consider only Fz+1,2 here. 

II. SECOND ORDER ZIP FLUXES 

A straightforward implementation of Eq. (5) for the convective flux would yield 

Ff+1/2=S[~i+l~i+l + WiViI* (8) 

However, as is pointed out in the classic 1968 paper by Hirt [2], a better form for 
this convective flux is 

F~+1/2=d[~i+,Wi+Wi+lUiI. (9) 

Hirt refers to this form as ‘“‘ZIP” differencing, a convention we shall keep here. Hirt’s 
“heuristic” stability analysis of difference equations entails expanding each term in 
the difference equation in a Taylor series to obtain the differential equation one is 
actually solving. Examination of the properties of this new differential equation sheds 
much light on the stability and error characteristics of the difference equation. 
Expanding our flux form representation for the second term in (3) we find 

awv FD 
c-1 ax 3 Ax-‘[F;, 1,2 - F;-J = (10) 

where the superscript refers to the linite difference approximation and TE represents 
the truncation error terms. 

For Eq. (8) we find that 

Ax4 + O(Ax6) 

while for the ZIP flux (9) we find 

TE=$ w$+v$ ,Ax2+ 1 I 
-&-[w$+v$] dx4+O(dx6). (12) 

I 

In Hirt’s heuristic stability analysis one looks for truncation error terms of the form 
a*w/L+x’ on the right-hand side of (3), since each terms will destabilize numerical 
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solutions to Eq. (1) if they are negative and artificially damp the solutions if they are 
positive. (It should be noted that for certain schemes, terms of this form are 
destabilizing regardless of their sign. For the leapfrog scheme in particular, this result 
follows directly from the unconditional instability of the scheme when applied to the 
heat or diffusion equation [3, p. 61 I.) A look at (12 j shows that terms of this form 
are simply not present. One can extend Hirt’s argument and look for terms i~vo~~i~~ 
any even derivatives of w with respect to x, since any such terms could pote~tiai~~ 
destabilizing, but these too are absent when ZIP fluxes are used. The odd order 
derivatives in the truncation error terms will give rise to error, but these will be of a 
dispersive rather than of a dissipative or antidissipative nature. 

By contrast, if we examine the truncation errors given by (I I ), we find that the 
leading term is 

(13) 

which will contribute a destabilizing or dissipative term except in the trivial case 
&/ax = 0. Thus although both forms for the convective Rux have the same format 
order of accuracy in terms of dx, we find the ZIP form preferable from stability con- 
siderations. 

We wish to emphasize here that the kinds of numerical instability being addressed 
by ZIP differencing are nonlinear in nature since the instability vanishes when ei 
w or v is constant; indeed, fluxes (8) and (9) are identical in this limit. 

III. HIGH ORDER “ZIP” FLUXES 

The extension of the ZIP concept to higher order can be seen by expanding (NV),“” 
for the second order ZIP flux (9) 

=~A~-~I~i+l~i+~i~i+l-~i~i-1-~i-i~i] 

= f Ax-‘[w,, 1 - Wj-l]21iffAX-‘[Uitl-Ui-1JWi 

So we see that ZIP differencing of the convective flux is equivalent to taking a central 
second order finite difference approximation to the term WV, + VW, rather than (WV),. 
We point out that Cheng and Shubin [5] have also noted that second order cenrral 
differencing of the term WV, + VW, leads to a conservative scheme, something we 
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have proven here by showing the ZIP form to be the equivalent convective flux. It 
would seem, then, that higher order forms for ZIP fluxes, if they exist at all, are 
equivalent to higher order central difference approximations to the form WU, + UW,. 
In fact, it is now quite clear why the ZIP fluxes work as they do: For central 
differences of all orders of accuracy, the truncation error of approximations to first 
derivatives involve only odd order derivatives of the function. Hence, the form 
WV, + VW, can never produce terms involving even order derivatives of w, as long as 
centered finite differences are used. By way of contrast “straightforward” central 
differencing of the form (WV), will still produce only odd order derivatives, but those 
derivatives will operate on the quantity WV, and can always be expanded toxshow that 
terms involving the undesirable even order derivatives of w are present. For example, 
the “straightforward” fourth order convective flux 

FL 1~2 = (7/12)(wivi+ wi+lvi+l)-~1/12)~wi-lvi-l + wi+*vi+2) (15) 

gives the truncation error 

J-E=--- lo $dx’ + 0(,4x6). (16) 

Expansion of the leading term shows components involving both J2w/ax2 and 
a4w/ax4. 

Without further ado, we give here the appropriate ZIP fluxes for the indicated 
spatial order of accuracy: 

Second Order : 

FL ~2 = ?!Lwi+lvi + wivi+ll* (17) 

Fourth Order : 

F;+ 112 =$[wi+,vi+ WiVi+l] 

-&[wi+2vi + wivi+2 + wf+lvi-l + wi-lz’i+l]’ (153) 

Sixth Order: 

FF+1/2= (3/4)[wi+lVi + WiVi+l] 

-(3/20)[wi+Zvi + wjvi+2 + wi+lVi-l + W[-1Vi+l] (19) 

+WW[w i+3vi+ wivi+3 + wi+2”i-l + Wi-lVi+2 + wi+1Vi-2 + Wi--fVi+l]a 

In general 

(20) 
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where N = order of approximation (even) f 2 

c;=-cf-l * 
N-k+ 1 

N+k ’ 

k-l 

‘ki = x (Wi-j+kvi-j + Wi-jvi-j+k)a 
j=O 

(23) 

The reader can verify easily that the quantity [3’;+ 1,2 - FF-,,] Ax-’ does in fact 
reproduce the appropriate order finite difference approximation to the quantity 
(WC’, t- w,u)! when the above expressions are used. 

IV. NUMERICAL EXAMPLE 

We choose as our computational example the exploding diaphragm or 
problem for the one-dimensional equations of ideal inviscid compressible fl 

(24) 

where p, v, P and E are the fluid density, velocity, pressure and specific total energy: 
respectively. Also, 

P = (y - l)(pE - $v2), Gw 

where we will choose y= 1.4. Our initial condition consists of two constant states, one 
to the left and one to the right, separated by a discontinuity which is assumed to lie 
midway between two grid points, in this case points 50 and 51. For these calculations 
P left = Plert = 1.0, pright = 10.0, and J’tight = 100.0. All calculations were done on a 
uniform mesh of 100 grid points using a Courant number of 0.1, and utilizing the 
second and fourth order leapfrog-trapezoidal flux-corrected transport (FCT) 
algorithms described in [ 11. For simplicity the Boris ook flux limiter [ 1,6] was 
used. Briefly, FCT algorithms solve Eq. (1) by forming a point by point weighted 
average of two transportive fluxes, one chosen to give monotone results (free of 
spurious oscillations) for the problem at hand, and the other to give formally high 
order accuracy. The high order fluxes are weighted as heavily as possible without 
violating monotonicity constraints, a process referred to as Ylux limiting.” In this 
example our monotone flux is given by the first order Rusanov scheme [7], while our 
high order fluxes are given by the aforementioned second and fourth order leap- 
frog-trapezoidal schemes. The tests we will make of ZIP versus non-ZIP differenc~~g 

581/40/Z-16 
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of convective terms refer only to the high order portion of the FCT algorithm. FCT 
algorithms are extremely effective in suppressing the numerical oscillations and 
instabilities which would otherwise occur with the high order scheme. Because of this, 
there may be a tendency on the part of the user to believe that great care is not 
required in choosing the higher order portion of the total FCT scheme since the flux 
limiting will “save” him. We shall show that this is not always the case. 

We have written Eq. (24) to show explicitly the convective terms as the second 
terms in the (vector) equation. In Fig. 1 we show the calculated (data points) and 
analytic (solid line) density profiles after 500 time steps using the second order 

ZND ORDER STRAIGHT 

2ND ORDER ZIP 

FIG. 1. Comparison of analytic and computed density profiles (solid lines and data points respec- 
tively) for the exploding diaphragm problem given in the text for (a) second order straightforward 
convective fluxes (Eq. (B)), and (b) second order ZIP fluxes (Eq. (17)). 
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accurate convective fluxes given by the “straightforward” evaluation Eq. (8) an 
the ZIP evaluation Eq. (17). We note that analytically we Rave a shock wave m 
to the left, followed by a contact discontinuity, and a rarefaction fan moving to 
right. The straightforward calculation is seen to be afflicted by several large sc 
numerical oscillations while the ZIP calculation yields a reasonably accurate an 
oscillation-free profile, even though the implementation of FCT has 
calculations stable. From (3), (10) and (13) we see that strai~btforward d 
is equivalent to adding a diffusion term with coefficient -(&/8x)/2 to the right-~a~ 
side of (3). When au/ax is positive, as in the rarefaction fan, we expect n 
instability; while in the shock (&/ax < 0) we expect artificial dissipation. 

FIG. 2. Same as Fig. 1 but for (a) fourth order straightforward convective fluxes Eq. (I5), and (b) 
fourth order ZIP fluxes Eq. (18). 
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that all of the regions of roughness or oscillations in Fig la represent fluid elements 
that are, or at one time were, in the rarefaction fan; and further that the density jump 
at the shock is smaller and occupies a greater number of cells than in the 
corresponding ZIP calculation, Fig lb. The ZIP calculation is obviously far superior. 
To be fair, other procedures could have “fixed” the problem. In fact our choice of the 
virtually non-dissipative leapfrog-trapezoidal scheme is probably not a wise one for a 
calculation of this type, where discontinuities abound. Nonetheless we do feel this 
example makes a valid comparison of convective differencing schemes. 

In Fig. 2 we show the same comparison as in Fig. 1, but this time for the fourth 
order “straightforward” flux Eq. (15) and for the fourth order ZIP flux Eq. (18). 
Again the “straightforward” calculation gives numerical oscillations whereas ZIP 
differencing experiences no apparent difficulties. Comparing Fig. 1 and 2 we see an 
improvement in the solution as we go from second to fourth order, a behavior one 
would expect based on a linear dispersion analysis. Further improvements in the ZIP 
solutions are seen as the order of the approximation is increased to sixth and higher, 
but the oscillations associated with the “straightforward” differencing remain intact. 
In fact the improvement shown here is quite mild compared to what we have seen in 
other types of calculations as we increase the spatial order of the approximation. It 
now appears that the “ultimate” FCT scheme will be either a very high order 
polynomial-based approximation scheme or a pseudospectral scheme (see [S]). Both 
the second and fourth order calculation smear the contact discontinuity more than is 
desirable. This is due to the overly conservative assumptions of the flux limiter used 
(the“clipping” problem-see [l]) at early times, and can be remedied by using a 
different flux limiter [l] and using monotonicity constraints whose description is 
beyond the scope of this paper. 

Before leaving this section we briefly present several further calculations which 
may be of some interest to the reader. 

Another very popular way of writing a second order convective flux is 

F;+ l/2 = +Cwi+ 1 + wi>(vi+ 1 + ui> W-9 

In fact MacCormack [14] has also concluded that the straightforward flux (8) is to 
be avoided in certain regions and is to. be replaced by (26) there. Comparison of (8), 
(9) and (26) h s ows that (26) is nothing more than an average of second order ZIP 
and straightforward fluxes. The results for our Riemann test problem using (26) for 
the convective fluxes are shown in Fig. 3. We note that the results are far superior to 
those for the straightforward fluxes, Fig. la, but not quite as good as those for the 
ZIP fluxes, Fig. lb. 

We implied earlier that some of the problems associated with straightforward 
fluxes could be overcome by using a dissipative scheme. In Fig. 4, we show the 
results of using the fourth order straightforward flux (15) plus a dissipative flux of the 
form 

Ff+ 1/2 = & 
(1 vi+;‘v* / +ci+;‘ci) 

Iwi+2 - wi-l - 3(wi+ 1 - wi>12 (27) 
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which approximates a fourth order dissipation term involving the fourth derivative of 
W. Here ci is the sound speed at grid point i. Note that the results are much ~rnpr~ve~ 
over Fig 2a. In Fig. 5 we show the results of adding the same dissipative flux (27) to 
the fourth order ZIP flux (18). The results are degraded only slightly. The idea of 
using fourth order dissipation with non-dissipative fourth order schemes is originally 
due to Kreiss and Oliger 1151, and the obvious extension to even higher order 

1 

schemes is the subject of study by the present author. 

2ND ORDER ‘h-W 

l.OOE i _DEN51V a- 

FIG. 3. Same as Fig. 1 but for the second order convectice flux given by Eq. (25). 

l.!lOE 1 

4M 5m D=l/lZ 
DEN51 -Pf 

O.OOE 0 1 / I / 

X 

FIG. 4. Same as Fig. 2a but with the addition of a fourth order dissipation term given by Eq. (27). 
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The reader may note that in the energy component of (24), the Pv term could 
easily have been treated using the ZIP format. In fact, by (25) P is proportional to 
one component of pE and is therefore subject to the same kind of nonlinear 
instabilities as are the other convective terms. In Fig. 6 we show the results of using 
the fourth order ZIP flux (18) for both the pEv and the Pv terms in the energy 
equation. Although there is very little difference in this case from the straightforward 
treatment of Pv, the ZIP flux form is recommended on theoretical grounds. 

1.00E 1 

4M ZIP D=l/lZ 
DEN51 N 

: 

t 

O.OOE 0 - 
X 

FIG. 5. Same as Fig. 2b but with the addition of a fourth order dissipation term given by Eq. (27). 

4M ZIP + PV ZIP 

l,OOE 1 DEN51rf 1 

FIG. 6. Same as Fig 2b but using the ZIP format for the term Pv in the energy equation of (24). 
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V. CONCLUSIONS 

We have shown that ZIP differencing of the term (WV), is the equivalent of a 
centered differencing of the alternative form WV, + wXu, both in the second order 
iimit and with regard to the kinds of truncation error terms that are produced for the 
higher orders. The form of the truncation error terms is such as to eliminate one class 
of nonlinear computational instabilities. Explicit expressions for the calculation of 
arbitrarily high order ZIP fluxes have been given, and computational examples have 
been given to show the advantages of the ZIP flux form over the “s~~ghtforw~ 
flux form within the context of FCT algorithms. It seems to us that the ‘heuristi 
stability analysis of Hirt [2] has again proved to be a r e tool in ~~aly~i~g 
numerical schemes. We should point out to the reader that ZIP flux concept is 
but one example of a class of numerical techniques based on ‘5 analysis known as 
truncation error cancellation (TEC) which are now quite highly developed and which 
have even been automated [9-l 11. We also note that while we have ~imite 
discussion here to destabilizing terms due to spatial truncations TEC considers such 
terms due to temporal truncation as well. Similar, but not identical, techniques have 
been given by Warming and Hyett [ 121, Lerat and Peyret [16], ~a~e~ko and S~~~ki~ 
[IT], and by Cheng [18]. 
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